Ir al contenido principal

Termodinámica

La termodinámica es la rama de la física que describe los estados de equilibrio termodinámico a nivel macroscópico

El Diccionario de la lengua española de la Real Academia, por su parte, define la termodinámica como la rama de la física encargada del estudio de la interacción entre el calor y otras manifestaciones de la energía.​ Constituye una teoría fenomenológica, a partir de razonamientos deductivos, que estudia sistemas reales, sin modelizar y sigue un método experimental.​ Los estados de equilibrio se estudian y definen por medio de magnitudes extensivas tales como la energía interna, la entropía, el volumen o la composición molar del sistema,​ o por medio de magnitudes no-extensivas derivadas de las anteriores como la temperaturapresión y el potencial químico; otras magnitudes, tales como la imanación, la fuerza electromotriz y las asociadas con la mecánica de los medios continuos en general también pueden tratarse por medio de la termodinámica.
Máquina térmica típica donde puede observarse la entrada desde una fuente de calor (caldera) a la izquierda y la salida a un disipador de calor (condensador) a la derecha. El trabajo se extrae en este caso mediante una serie de pistones.
La termodinámica ofrece un aparato formal aplicable únicamente a estados de equilibrio,​ definidos como aquel estado hacia «el que todo sistema tiende a evolucionar y caracterizado porque en el mismo todas las propiedades del sistema quedan determinadas por factores intrínsecos y no por influencias externas previamente aplicadas». Tales estados terminales de equilibrio son, por definición, independientes del tiempo, y todo el aparato formal de la termodinámica –todas las leyes y variables termodinámicas– se definen de tal modo que podría decirse que un sistema está en equilibrio si sus propiedades pueden describirse consistentemente empleando la teoría termodinámica.​ Los estados de equilibrio son necesariamente coherentes con los contornos del sistema y las restricciones a las que esté sometido. Por medio de los cambios producidos en estas restricciones (esto es, al retirar limitaciones tales como impedir la expansión del volumen del sistema, impedir el flujo de calor, etc.), el sistema tenderá a evolucionar de un estado de equilibrio a otro;6​ comparando ambos estados de equilibrio, la termodinámica permite estudiar los procesos de intercambio de masa y energía térmica entre sistemas térmicos diferentes.
Como ciencia fenomenológica, la termodinámica no se ocupa de ofrecer una interpretación física de sus magnitudes. La primera de ellas, la energía interna, se acepta como una manifestación macroscópica de las leyes de conservación de la energía a nivel microscópico, que permite caracterizar el estado energético del sistema macroscópico.​ El punto de partida para la mayor parte de las consideraciones termodinámicas son los que postulan que la energía puede ser intercambiada entre sistemas en forma de calor o trabajo, y que solo puede hacerse de una determinada manera. También se introduce una magnitud llamada entropía,​ que se define como aquella función extensiva de la energía interna, el volumen y la composición molar que toma valores máximos en equilibrio: el principio de maximización de la entropía define el sentido en el que el sistema evoluciona de un estado de equilibrio a otro.​ Es la mecánica estadística, íntimamente relacionada con la termodinámica, la que ofrece una interpretación física de ambas magnitudes: la energía interna se identifica con la suma de las energías individuales de los átomos y moléculas del sistema, y la entropía mide el grado de orden y el estado dinámico de los sistemas, y tiene una conexión muy fuerte con la teoría de información. En la termodinámica se estudian y clasifican las interacciones entre diversos sistemas, lo que lleva a definir conceptos como sistema termodinámico y su contorno. Un sistema termodinámico se caracteriza por sus propiedades, relacionadas entre sí mediante las ecuaciones de estado. Estas se pueden combinar para expresar la energía interna y los potenciales termodinámicos, útiles para determinar las condiciones de equilibrio entre sistemas y los procesos espontáneos.
Con estas herramientas, la termodinámica describe cómo los sistemas reaccionan a los cambios en su entorno. Esto se puede aplicar a una amplia variedad de ramas de la ciencia y de la ingeniería, tales como motorescambios de fasereacciones químicasfenómenos de transporte, e incluso agujeros negros.

Comentarios

Entradas más populares de este blog

Magnetismo

El  magnetismo  o  energía magnética  es un fenómeno natural por el cual algunos objetos producen  fuerza  de atracción o repulsión sobre los otros materiales.  Hay algunos materiales conocidos que tienen propiedades magnéticas detectables fácilmente como el  níquel ,  hierro ,  cobalto  y sus  aleaciones  que comúnmente se llaman  imanes . Sin embargo, todos los materiales son influidos, de mayor o menor forma, por la presencia de un  campo magnético . El magnetismo también tiene otras manifestaciones en física, particularmente como uno de los dos componentes de la  radiación electromagnética , como por ejemplo, la  luz . El fenómeno del magnetismo es ejercido por un  campo magnético , por ejemplo, una corriente eléctrica o un dipolo magnético crea un campo magnético, este al girar imparte una fuerza magnética a otras partículas que están en el campo. Para una aproximación excelente (pero ignorando algunos efectos cuánticos, véase  electrodinámica cuántica ) las ecuaciones

Óptica

La  óptica  es la rama de la  física  que involucra el estudio del comportamiento y las propiedades de la  luz ,​ incluidas sus interacciones con la  materia , así como la construcción de  instrumentos  que se sirven de ella o la  detectan .​ La óptica generalmente describe el comportamiento de la  luz visible , de la  radiación ultravioleta  y de la  radiación infrarroja . Al ser una  radiación electromagnética , otras formas de radiación del mismo tipo como los  rayos X , las  microondas  y las  ondas de radio  muestran propiedades similares.​ La mayoría de los fenómenos ópticos pueden explicarse utilizando la descripción  electrodinámica  clásica de la luz. Sin embargo, la óptica práctica generalmente utiliza modelos simplificados. El más común de estos modelos, la  óptica geométrica , trata la luz como una colección de  rayos  que viajan en línea recta y se desvían cuando atraviesan o se reflejan en las superficies. La  óptica física  es un modelo de la luz más completo, que

Astrofísica

El término  astrofísica  refiere al desarrollo y estudio de la  física  aplicada a la  astronomía .​ La astrofísica emplea la física para explicar las propiedades y fenómenos de los cuerpos estelares a través de sus leyes, fórmulas y magnitudes.​ Si bien se usó originalmente para denominar la parte teórica de dicho estudio, la necesidad de dar explicación física a las observaciones astronómicas ha llevado a que los términos astronomía y  astrofísica  sean usados de forma equivalente.  Una vez que se comprendió que los elementos que forman parte de los "objetos celestes" eran los mismos que conforman la  Tierra  y que las mismas leyes de la física se aplican a ellos, había nacido la astrofísica como una aplicación de la física a los fenómenos observados por la astronomía. La astrofísica se basa, pues, en la asunción de que las  leyes de la física  y la química son universales, es decir, que son las mismas en todo el universo.  La mayoría de los astrónomos (si no todos) ti