La mecánica de un cuerpo rígido es aquella que estudia el movimiento y equilibrio de sólidos materiales ignorando sus deformaciones.
Se trata, por tanto, de un modelo matemático útil para estudiar una parte de la mecánica de sólidos, ya que todos los sólidos reales son deformables. Se entiende por cuerpo rígido un conjunto de puntos del espacio que se mueven de tal manera que no se alteran las distancias entre ellos, sea cual sea la fuerza actuante (matemáticamente, el movimiento de un cuerpo rígido viene dado por un grupo uniparamétrico de isometrías).Centro de gravedad
El centro de gravedad o centro de masas de un sistema continuo es el punto geométrico definido como:
(1)
En mecánica del cuerpo rígido, el centro de masa se usa porque tomando un sistema de coordenadas centrado en él, la energía cinética total K puede expresarse como , siendo M la masa total del cuerpo, V la velocidad de traslación del centro de masas y Krot la energía de rotación del cuerpo, expresable en términos de la velocidad angular y el tensor de inercia.
Velocidad angular
Sea una partícula cualquiera de un cuerpo rígido el cual se desplaza girando. Dado que todos los puntos están rígidamente conectados podemos hacer la siguiente descomposición de posición y velocidades, tomando un punto de referencia arbitrario
Momento angular o cinético
El momento angular es una magnitud física importante porque en muchos sistemas físicos constituye una magnitud conservada, a la cual bajo ciertas condiciones sobre las fuerzas es posible asociarle una ley de conservación. El hecho de que el momento angular sea bajo ciertas circunstancias una magnitud cuyo valor permanece constante puede ser aprovechado en la resolución de las ecuaciones de movimiento. En un instante dado, y fijado un punto del espacio en un punto del espacio O, se define el momento angular LO de un sistema de partículas respecto a ese punto como la integral siguiente:
Donde son el volumen del sólido y la densidad másica en cada punto, y son la velocidad de una partícula del cuerpo y el vector de posición respecto a O. Conviene recordar que el valor de la magnitud anterior depende de qué punto O se elija. Para el estudio de sólidos rígidos en movimiento conviene escoger un "punto móvil" (es decir, para cada instante del tiempo consideraremos un punto diferente del espacio). Por ejemplo podemos evaluar el momento angular respecto al centro de masas G del sólido:
(3)
Donde se ha introducido la abreviación.
Espacio de configuración de un cuerpo rígido[editar]
La mecánica lagrangiana para describir un sistema mecánico con un grado finito de grados de libertad se define como una variedad diferenciable llamada espacio de configuración. El movimiento del sistema o evolución con el tiempo se describe como un conjunto de trayectorias a lo largo del espacio de configuración. Para un cuerpo rígido con un punto inmóvil (sólo existe rotación) el espacio de configuración viene dado por la variedad diferenciable del grupo de rotación SO(3). Cuando el sólido tiene traslación y rotación de todos sus puntos el espacio de configuración es E+(n), el subgrupo de isometría del grupo euclídeo (combinaciones de traslaciones y rotaciones.
Comentarios
Publicar un comentario